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A B S T R A C T

The startling success of ChatGPT and other large language models (LLMs) using transformer-based generative
neural network architecture in applications such as natural language processing and image synthesis has many
researchers excited about potential opportunities in process systems engineering (PSE). The almost human-like
performance of LLMs in these areas is indeed very impressive, surprising, and a major breakthrough. Their
capabilities are very useful in certain tasks, such as writing first drafts of documents, code writing assistance,
text summarization, etc. However, their success is limited in highly scientific domains as they cannot yet
reason, plan, or explain due to their lack of in-depth mechanistic domain knowledge. This is a problem in
domains such as chemical engineering as they are governed by fundamental laws of physics and chemistry
(and biology), constitutive relations, and highly technical knowledge about materials, processes, and systems.
Although purely data-driven machine learning has its immediate uses, the long-term success of AI in scientific
and engineering domains would depend on developing hybrid AI systems that combine first principles and
technical knowledge effectively. We call these hybrid AI systems Large Knowledge Models (LKMs), as they will
not be limited to only NLP-based techniques or NLP-like applications. In this paper, we discuss the challenges
and opportunities in developing such systems in chemical engineering.
1. Introduction

In recent years, the formidable combination of large data sets,
new machine learning (ML) algorithms and architectures, and powerful
hardware has led to the birth of large language models (LLMs), such
as ChatGPT (Brown et al., 2020), LLaMA (Touvron et al., 2023a,b;
AI@Meta, 2024), and Gemini (formerly, Bard) (Team et al., 2023),
which have been surprisingly successful in applications such as natu-
ral language processing (NLP) and tasks mimicking natural language
understanding (NLU). These models are characterized by their vast
number of parameters, deep learning capabilities, and extensive train-
ing data, which enable them to generate human-like text, comprehend
complex instructions, and even perform creative tasks. In simple terms,
LLMs are highly sophisticated autocomplete engines that learn to cap-
ture conditional probabilistic associations among data elements (called
tokens) at a massive scale. Although language models are an old idea
from the 1980s, it is their recent avatar as LLMs that has caught
everyone’s attention.

LLMs are based on the transformer architecture introduced by
Vaswani et al. in their seminal paper (Vaswani et al., 2017). This
architecture enables the model to handle sequential data and under-
stand the context in a more flexible and efficient manner compared
to previous models, such as recurrent neural networks (RNNs) or long
short-term memory (LSTM) networks. The training process involves
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unsupervised learning from a vast corpus of text data, allowing the
model to grasp a wide range of language patterns, styles, and infor-
mation. The massive scale of LLMs is the defining feature. For example,
GPT-3 (Generative Pre-trained Transformer-3) developed by Open AI –
which is the model behind the chatbot ChatGPT – has over 175 billion
parameters and requires approximately 570 GB of filtered text data to
train. This immense scale allows the model to develop a broad and
nuanced ‘‘understanding’’ of language and context, though it also raises
challenges in terms of computational resources and potential biases in
the training data. It turns out that what Nobel Laureate Philip Anderson
said (Anderson, 1972) more than 50 years ago in the context of physics
is valid in AI as well: ‘‘More is different’’, indeed!

LLMs seem to be good at certain applications, such as writing drafts,
coding assistance, summarizing, translating, and answering questions.
Despite their capabilities, LLMs face several limitations. They can gen-
erate misleading or biased information, relying on the data on which
they were trained (Bender et al., 2021). Moreover, ethical consider-
ations about consent, privacy, and misuse of generated content also
plague these systems. This was most recently exemplified by the law-
suit filed by The New York Times against OpenAI and Microsoft for
copyright infringement in December 2023, in which The New York
Times claimed that millions of their articles were used to train AI
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systems, which are now viewed as a comparable source of informa-
ion (Grynbaum and Mac, 2023-12-27). In addition to such concerns,

the sciences and engineering domains pose other challenges. LLMs
re perhaps appropriate for domains such as NLP, where there are
o conservation laws or first-principles-based knowledge to leverage.
ll relevant knowledge is in the data. Therefore, purely probability-
ased autocomplete techniques are appropriate and successful in these
pplications.

However, domains such as chemical engineering are governed by
the fundamental laws of physics and chemistry (and biology), consti-
tutive relations, and highly technical knowledge about materials, pro-
cesses, and systems (Venkatasubramanian, 2019b; Venkatasubramanian
and Mann, 2022). Not using such a treasure trove of information seems
ot only inefficient, but also can lead to results that are unsafe. The
ost of a mistake in movie and restaurant recommendations made using
utocomplete-like guesses is not very high; maybe one loses a couple of
ours and a few hundred dollars. However, guessing the wrong decision
bout the process could lead to potentially dangerous results. Although
urely data-driven machine learning has immediate uses, we believe
hat the long-term success of AI in scientific and engineering domains
ould depend on the use of first principles and technical knowledge
ffectively. Current LLMs cannot reason or plan, as they lack such in-
epth models of their domains. ChatGPT hallucinations are perhaps
nteresting, perhaps even amusing, in certain applications, but they can
e potentially dangerous in highly technical domains such as chemical
ngineering.

Furthermore, many chemical engineering applications are not ‘‘big
ata’’. We certainly have access to more data now than we did, say, a
ecade ago. But unlike vision, NLP, and game playing, we cannot easily
enerate terabytes of data, except perhaps in computer simulations.
o, purely data-driven techniques mimicked from such domains are
ot appropriate. On the other hand, our knowledge of first principles
an be leveraged and exploited to reduce the need for large amounts
f data. Therefore, developing hybrid AI models is more appropriate
or many chemical engineering applications (Venkatasubramanian and
ann, 2022; Mann and Venkatasubramanian, 2021; Mann et al., 2022,

2023a,b, 2024; Chakraborty et al., 2021, 2020). The importance of
using domain knowledge has become evident even in non-technical
areas for LLMs. For example, ChatGPT uses human experts’ guidance
in the last stages of its training as reinforcement learning using human
feedback (RLHF). Although this is a step in the right direction, much
more needs to be done before the scientific and engineering domains
can rely on these tools to solve problems.

In this perspective article, we discuss the history of language mod-
els, progress in state-of-the-art systems, and their applications in a few
areas. We also highlight the benefits accrued from the use of a hybrid
AI approach (Chakraborty et al., 2022) in conjunction with LLMs for
 few application domains. Finally, we conclude by suggesting some
pportunities for work in the near term in this rapidly evolving field.

2. Evolution of language models

The recent developments in the domain of large language models
(LLMs) are groundbreaking in their impact on nearly every aspect of
human life. To get a better sense of all this, it is useful to review
he early stages of the advances that have enabled such astounding

progress. In this section, we present the chronology of language models
in three parts by splitting the timeline approximately based on the
progress made, acknowledging the capabilities and limitations of that
period.

2.1. Early years: The symbolic AI approach – 1950–1990

In the early part of AI’s formative history, the predominant ap-
proach for knowledge modeling was based on symbolic logic, such as
the use of heuristic rules in expert systems, which yielded the name
2 
of that era as symbolic AI. This is in contrast with recent developments
that are more data-driven, i.e., numeric AI, or machine learning (ML) as
we know it today.

The fact that language models are not novelties that have emerged
only recently during the neural network phase of AI might seem sur-
prising. The conceptualization of chatbot-like systems was made in
the 1950s by the computing pioneer Alan Turing, as proposed in his
groundbreaking article (Turing, 1950) describing the Turing test. This
was quickly followed by the first forays into developing a chatbot,
in the format we now know of, named ELIZA (Weizenbaum, 1966).

reated nearly six decades ago, it is strikingly similar to the chatbots
of today in many ways. Its key algorithm relies on scanning the user’s
nput text for any keywords, followed by presenting the output text
ccording to a rule related to the keyword(s) identified. If a keyword
s not found, then either a context-free statement or a previous output
s generated. The progress of early language models in the symbolic AI
ra is presented in Fig. 1.

It is interesting to note that these rules are not specific to any task
r subject and can be modified based on the end-user’s application.
LIZA laid the foundation for the development of future chatbots by

addressing challenges that must be overcome to advance the field. One
such aspect highlighted was the need for such a conversational pro-
gram to be capable of storing information obtained through its inputs.
Subsequently, an information retrieval algorithm would be necessary to
improve its conversational capabilities. In addition, such a tool should
be able to make inferences based on the input received. This would
enable it to interpret and store contextual information described in
earlier input(s). These are characteristics that enable the state-of-the-art
chatbots today to present themselves as human-like.

Although ELIZA presented the first conversational program, it had
drawbacks such as its inability to parse the grammar and semantics of
its language of use, lack of storage of information received during its
input–output interactions, and absence of domain-specific information.
In an attempt to address these shortcomings, SHRDLU (Winograd,
1971) was created in 1970. It relied on propositional logic, and seman-
tic parsing of grammar rules to provide more flexibility to a conversa-
tional program in its learning. This would result in a more human-like
nteraction with the user. As a proof-of-concept, SHRDLU operated as
f the user had been conversing with a one-eyed robot with a hand
apable of interacting with blocks on a table. This interaction between
he user, the robot, and the blocks in this environment demonstrates a

deeper understanding of the subject than earlier systems.
Other systems based on the progress of that time were PARRY (Colby

et al., 1971), a program that responded as if it were a paranoid
schizophrenic. The output of the program was created to be a function
f its input, beliefs, affects, and intentions (Colby, 1974). It remains one

of the first programs capable of dialogue generation. There have been
ntriguing conversations between PARRY (as the patient) and ELIZA
as the psychotherapist), which remain one of the few instances of

interactions between computers in entirely natural language.
With the increasing success of previous language models,

the Hearsay-II Speech Understanding System (Erman et al., 1980)
was developed to convert speech to text that a computer program
can communicate with. Its innovation came from a hierarchical struc-
ture in its organization of linguistic knowledge, which significantly
facilitated information retrieval compared to its contemporaries. The
system represented an early effort to integrate probabilistic modeling
nto language processing, utilizing a blend of rule-based and statistical

techniques.
It is particularly interesting to note that efforts towards a hybrid

approach towards language models and AI in general are not new. Sev-
eral of the problems that are being addressed today were conceptually
formalized in the 1980s and 1990s. Cyc (Lenat et al., 1985; Lenat and
Marcus, 2023), a natural language system developed by Douglas Lenat
nearly four decades ago, is one such tool. Today, it includes over 10
million logic rules coupled with a reasoning engine that is capable
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Fig. 1. Progress of early language models, as research transitions from a logic-based approach to statistical-based approach. In chronological order: ELIZA (Weizenbaum, 1966),
SHRDLU (Winograd, 1971), PARRY (Colby et al., 1971), HEARSAY (Erman et al., 1980), and CYC (Lenat et al., 1985).
of making inferences. It uses a knowledge graph-like representation
with more than 1100 specialized reasoning modules. Dr. Lenat was
once quoted as saying, ‘‘Intelligence is ten million rules’’. (Lenat and
Feigenbaum, 1991; Lenat, 1988) This is what his project, Cyc, has now
acquired, and it is capable of combining human-like natural language
understanding with complex scenarios.

2.2. The data-driven statistical approach – 1990–2017

Despite the efforts of numerous researchers in NLP at the time,
the complexities of natural language posed a barrier that required a
radically different approach to overcome it, one that can learn from vast
amounts of text without the need to be overly prescriptive in its design.
With the availability of more data and computational power, largely
due to Moore’s law, data-driven statistical techniques made learning
from textual sources considerably easier, and more computationally
efficient.

One of the first endeavors in statistical language modeling was the
use of N-grams (the 1980s), which, combined with Hidden Markov
Models (HMMs), led to considerable improvement in a variety of
subdomains in NLP such as part-of-speech tagging, speech synthesis,
and machine translation. The Viterbi algorithm (Viterbi, 1967) was
adopted to decode the most likely sequence of hidden states in HMMs,
improving the accuracy of NLP systems. These were followed by statisti-
cal methods, which combined information-theoretic approaches. These
paved the way for the eventual application of ML-based approaches
such as support vector machines (SVMs) in the early 2000s. Such im-
provements led to significant improvements in accuracy on a multitude
of NLP tasks.

The growing number of datasets made available to the research
community during this time further catalyzed the growth of statistics-
based approaches for NLP tasks. The large-scale annotated corpora,
Penn Treebank for English (Marcus et al., 1993), revolutionized the
field by providing researchers with standardized datasets to train and
evaluate statistical models. These enabled researchers to explore more
sophisticated statistical techniques. Soon, the earlier methods of logic-
based and rule-based systems would not be able to scale up on these
larger datasets.

With the rediscovery of the backpropagation algorithm in 1986
(Rumelhart et al., 1986), the application of neural networks to nat-
ural language tasks began to take off. With the continued growth
in computational speed and availability of more data than before,
several application-specific variants of NNs were proposed. Recurrent
neural networks (RNNs) were becoming popular because of their ability
to understand the temporal aspect of data, making them ideal for
3 
processing sequential data as found in NLP. Improvements in con-
ventional RNNs were the use of long-short-term-memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997; Gers and Schmidhuber,
2001), which emerged as powerful models tailored for sequential data
processing. The LSTM models addressed the vanishing gradient prob-
lem of RNNs, and were able to account for long-range dependencies,
both drawbacks of the conventional RNN architecture. They soon be-
came state-of-the-art models, surpassing their contemporary statistical
model counterparts.

2.3. The transformer revolution – 2017-present

The introduction of the transformer architecture (Vaswani et al.,
2017) was a watershed moment for the field of NLP, which has since led
to stunning progress. A major weakness of previous language models
was the inability to retain information from the first elements of a
sequence, which was lost when new elements were incorporated into
the sequence.

There are 2 blocks in a transformer architecture: the encoder and
decoder. The encoder consists of a series of identical layers with each
having 2 sub-layers. The first sub-layer performs self-attention, fol-
lowed by the second sub-layer which is a fully connected feed-forward
neural network. The purpose of the encoder block is to derive a contex-
tual representation of the input sequence. The output from the encoder
is a vectorized embedding of each item from its input and accounts
for its context within the sequence as a result of the self-attention
mechanism. This enables the output from the encoder to account for
long-range dependencies within a sequence – a significant improvement
over prior architectures such as RNNs and LSTM networks. The output
of the encoder block serves as the input for the decoder.

The decoder block consists of self-attention, encoder–decoder atten-
tion, and feed-forward neural network. The decoder in a transformer
model can use the output embedding obtained from the encoder along
with the decoder’s outputs to ‘‘generate’’ the next item in the sequence
in an autoregressive manner – using the previous output of the decoder
as the input for the next item in the sequence – by accounting for
relevant context and its own output. Instead of relying on the con-
ventional practice of paying attention only to the last state of the
encoder, as is typically done with RNNs, each step of the decoder in
the transformer architecture examines all the states of the encoder. This
approach enables the decoder to access information pertaining to all
elements of the input sequence. This is the strength of state-of-the-art
generative pre-trained transformer (GPT) models.

This innovation revolutionized text processing and allowed lan-
guage models to transition to large language models (LLMs). This can be
visualized with the increase in the size of the datasets used for training
and the number of parameters in the model, depicted in Fig. 2.
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Fig. 2. The rapid increase in the size of LLMs. In chronological order: BERT (Devlin et al., 2018), GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 2020), LaMDA (Thoppilan
et al., 2022), GPT-4 (Achiam et al., 2023). Note the exponential increase in the number of parameters over a few years.
Table 1
The rapid increase in the size of training data used by GPT models by OpenAI. M – million; B – billion; GB – gigabytes.
Year GPT version Number of parameters (approximate) Training corpus size (approximate)

2018 GPT-1 117 M 4.5 GB
2019 GPT-2 1.5 B 40 GB
2020 GPT-3 175 B 570 GB
2.3.1. ChatGPT
In November 2022, OpenAI released ChatGPT, a chatbot that is

capable of conversing with a user in a natural language similar to that
of a human (Brown et al., 2020). Additionally, it is able to follow
instructions based on user prompts, and as a result, it can perform a
wide range of tasks – from writing prose and helping solve homework
problems to writing code indistinguishable from that written by a
professional programmer. It was a landmark moment for LLMs, since its
meteoric rise to several million users in a matter of weeks trumped that
of any social media platform in human history. This also opened several
public discussions on the boons (and banes) of such technologies.

The key improvement in ChatGPT (alternatively, GPT-3/3.5), in
contrast to its predecessors, is the fine-tuning approach applied to make
ChatGPT more conversational in its usage. This fine-tuning procedure
is based on a combination of supervised learning (with labeled data),
and reinforcement learning with human feedback (RLHF) (Christiano
et al., 2017).

2.3.2. Training data
Since 2018, the number of parameters for each successive GPT

model trained has increased exponentially, with a similar increase in
the size of the training data (see Table 1). From the conventional
ML perspective, this can be viewed as a way to combat the curse of
dimensionality. Based on performance, the increase in parameters and
training data has yielded more human-like characteristics to the outputs
of these models.

Trained on a record-setting 570 GB of training data, GPT-3/3.5
is a successor to previous generative pre-trained transformer (GPT)
models, namely GPT-1 (Radford et al., 2018) (2018), followed by
GPT-2 (Radford et al., 2019) (2019).
4 
2.3.3. Training procedure
Training for ChatGPT is performed in 3 stages by building on the

capabilities of InstructGPT (Ouyang et al., 2022).

Stage 1: Generative pre-training. In the first stage, the model is trained
on the training data using conventional NLP techniques such as masked
language modeling (MLM), where a portion of the known output is
masked, and the goal of the trained model is to predict the same. As
exemplified by BERT (Devlin et al., 2018), this approach creates a
baseline model that is capable of text summarization, translation, and
sentiment analysis tasks, among others.

Stage 2: Supervised fine-tuning. Text summarization, translation, and
sentiment analysis are one-shot tasks where an input is provided and
the model produces an output. Beyond this task, the baseline model is
fairly inept at having a conversation with a human on a particular topic,
which was the goal of such a chatbot. As a result, it was necessary to
fine-tune the baseline model into a supervised fine-tuned (SFT) model,
for conversational purposes.

This second stage of training involved humans who created a super-
vised (labeled) dataset of expected (i.e., considered ideal) responses for
a set of inputs. These human labelers wrote an appropriate response to
the input prompts, to which the baseline model was fine-tuned using
stochastic gradient descent (SGD). This is a parameter optimization
technique where the dataset is split into multiple smaller batches
(mini-batch), and a mini-batch is randomly/stochastically chosen to
calculate the gradient of the cost function. The parameters get updated
subsequently, and this process is repeated until either a pre-specified
value of the cost function is reached, or a pre-specified number of
iterations have elapsed, whereby the optimization is terminated. Hav-
ing obtained a SFT model, one still runs the risk of dealing with an
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Table 2
Open-source LLMs are not lagging behind their commercially successful counterparts. K – thousand; M – million; B – billion; T – trillion; GB – gigabyte; TB – terabyte.

Year GPT version Number of parameters
(approximate)

Training corpus size (approximate) Number of tokens

2022 BLOOM (Scao et al., 2022) 176 B 1.6 TB 350 B
2023 Llama (Touvron et al.,

2023a)
65 B – 1.4 T

2023 Llama 2 (Touvron et al.,
2023b)

70 B – 2 T
2023 StableLM (A.I., 2023) 3 B & 7 B 825 GB (Gao et al., 2020) 1.5 T
2023 Pythia (Biderman et al.,

2023)
70 M - 12 B 825 GB (Gao et al., 2020) 300–334 B

2023 Dolly 2.0 (Conover et al.,
2023)

12 B Fine-tuned on 15 K human-generated
prompt/response pairs

Based on Pythia (Biderman
et al., 2023)

2023 Alpaca (Taori et al., 2023) 7 B Fine-tuned on 52K
instruction-following data

Fine-tuned from Llama 7B
(Touvron et al., 2023a)

2023 Vicuna (Chiang et al.,
2023)

13 B Fine-tuned on 70K user-shared
conversations gathered from
ShareGPT.com with public APIs

Fine-tuned from Llama
(Touvron et al., 2023a)

2024 DBRX (Team, 2024) 132 B Pretrained on 12 T tokens of
carefully curated data, and a
maximum context length of 32k
tokens

pretrained on 12 T tokens of
text and code data

2024 Llama 3 (AI@Meta, 2024) 8 B & 80 B – 15 T
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overtrained model, where the output merely reflects its memorization
f the training dataset. This limitation could significantly narrow the

scope of application, and diminish the model’s efficacy, akin to that of
 lookup table.

Stage 3: Reinforcement learning with human feedback (RLHF). In order to
address this, a third and final stage of the training involved the use of
reinforcement learning (RL), where the model’s outputs are rewarded
or penalized by learning to provide outputs that maximize reward(s).
The vanilla implementation of RL (without any modifications) would
require a reward function — which is not ideal for chatbots. Further,
if such a mathematical function capable of predicting a better output
(maximizing reward) existed, it would negate the additional steps being
undertaken to fine-tune and improve the model.

Consequently, a human-in-the-loop approach was needed to develop
 reward model. Here, human contractors were presented with four to
ine outputs from the SFT model, and were asked to rank them from
est to the worst responses for the given input prompt. The better the

response, the higher the reward; therefore, the reward model learns
which kind of response yields a higher reward.

Having discussed the reward model, it is important to update the
FT model so that it overcomes the limitations previously discussed
n the earlier stage of training. Here, ChatGPT’s model uses Proximal
olicy Optimization (PPO) (Schulman et al., 2017), to update the policy

on the basis of which it returns its outputs. These updates are done in
small steps so that the policy does not deviate significantly from what is
considered a high-reward output. The information-theoretic concept of
Kullback–Leibler (KL) divergence was used to measure such deviations,
and to keep the ChatGPT model within reasonable bounds.

2.3.4. Open-source LLMs
The public release of ChatGPT led to a LLM race between several AI

esearch laboratories and commercial entities, resulting in the release
f several open-source LLMs. These enable the public to tweak the
arameters of the pre-trained models, which permit one to apply such
 model’s complex natural language capabilities to a specific domain.

The most popular open-source LLMs include BLOOM (Scao et al.,
2022) and Llama (Touvron et al., 2023a) by the technology giant Meta,
which was quickly followed by Llama 2 (Touvron et al., 2023b), and
lama 3 (AI@Meta, 2024). Llama 2, having been trained on 2 trillion
okens, has double the context length of Llama 1. In addition, it offers

3 models of varying sizes (7B, 13B, and 70B parameters) so that the
end user can utilize the model most appropriately sized for his or her
task. Llama 2 has been trained using a similar approach to that of
5 
ChatGPT by using RLHF. The release of such LLMs has led to a wave
of smaller, fine-tuned chatbots that perform comparably to their larger
counterparts on specific tasks. These, and numerous other open-source
LLMs/chatbots, have been presented in Table 2.

3. Modeling knowledge in chemical engineering: The three
paradigms

Understanding the role of AI and LLMs in chemical engineering
equires examining it through the lens of various knowledge-modeling
pproaches employed in our field. Initially, chemical engineering re-
ied heavily on empirical methods and heuristics, with a conspicuous
bsence of quantitative, first-principles-based models for almost a cen-
ury (Venkatasubramanian, 2019b). This changed in the 1950s, marked

by what is known as the Amundson era (Ramkrishna, 2013), in which
he adoption of applied mathematical techniques, especially linear alge-
ra, ordinary differential equations, and partial differential equations,
evolutionized the field by enabling the creation of models for unit op-
rations grounded in fundamental principles (Acrivos and Amundson,

1955; Ramkrishna and Amundson, 2004).
Similarly, decision-making within process systems engineering ini-

ially relied mainly on empirical knowledge and heuristic approaches.
his paradigm shifted in the 1960s, marking another pivotal moment

in modeling with the advent of mathematical programming techniques
like mixed-integer linear programming (MILP) and mixed-integer non-
inear programming (MINLP) (Daoutidis and Zhang, 2022). This trans-

formation was pioneered by Roger Sargent (Sargent, 1967), and his
students.

The next significant avatar in this long evolution of modeling
aradigms is the introduction of knowledge representation

concepts, and search techniques from artificial intelligence. This started
in the early 1980s under the leadership of Westerberg, Stephanopoulos,
and others from that era (Banares-Alcantara et al., 1985b, 1987;
Stephanopoulos et al., 1987, 1990). After remaining in the background
as a fringe activity for the past three decades, pursued by only a
few researchers, this knowledge-modeling paradigm has now gone

ainstream. The newest avatar in this evolution of knowledge models
s the large-language model. While the classical AI models of the
970s-1980s were based on symbolic representations using logic and
easoning, recent AI advances use statistical machine learning based
n probability theory and network science.

Broadly speaking, one might consider the Amundson era as the
introduction of formal methods for modeling process units. The Sar-
gent era, and the AI era are about modeling the process engineer.
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That is, modeling and automating human information processing and
ecision-making, formally, to solve problems in synthesis, design, con-

trol, scheduling, optimization, and risk analysis. Some of these could
be addressed by the mathematical programming framework, i.e., the
Sargent approach, but others, such as fault diagnosis and process
hazards analysis, require causal model-based reasoning, and are better
addressed by AI concepts and techniques.

3.1. Role of symbolic AI in knowledge modeling and representation

When it comes to modeling knowledge, most chemical engineers
mmediately think of differential and algebraic equations (i.e., DAE

models). These are suitable for certain classes of problems, such as
those found in thermodynamics, transport phenomena, and reaction
engineering.

However, there are other kinds of knowledge that do not lend
themselves to such models. For example, reasoning about cause and
effect in a process plant is central to fault diagnosis, risk analysis,
alarm management, and supervisory control. Knowledge modeling for
this problem class typically does not lend itself to the traditional DAE
approach to modeling because it cannot provide explicit relationships
between cause(s) and effect(s). In some simple cases, perhaps it can, but
it is incapable of addressing real-life industrial process systems, which
are often complex and nonlinear with incomplete and/or uncertain
data. Furthermore, even for simple systems, DAE-based models are not
suitable for generating mechanistic explanations of causal behavior.
This is where symbolic AI comes in.

We should not forget that the conceptual breakthrough of repre-
enting and reasoning with symbolic structures and relationships is an
ssential contribution of AI (Rich, 1985; Venkatasubramanian, 1989;

Ungar and Venkatasubramanian, 1990; Russell and Norvig, 2016). This
is what we refer to as symbolic AI, the classical AI of the 1960s-
1980s, to differentiate it from data-driven machine learning, which
we call numeric AI. Although the importance of symbolic AI has been
largely missed in all the current excitement about data-driven machine
learning, we expect it to resurface as we go beyond purely data-
driven models towards more comprehensive knowledge-based intelli-
gent systems, which are necessary for many applications in chemical
engineering.

The symbolic AI methodologies include models such as the follow-
ing:

• Graph-theoretical models such as signed digraphs used exten-
sively to perform causal reasoning in the identification of ab-
normal events, diagnosis, and risk analysis (Iri et al., 1979;
Vaidhyanathan and Venkatasubramanian, 1995; Maurya et al.,
2003,?)

• Petri nets used for modeling discrete event systems (Johnsson and
Årzén, 1998; Viswanathan et al., 1998a,b)

• Rule-based production system models used in expert systems
for automating higher-order reasoning (Banares-Alcantara
et al., 1985a,b, 1987, 1988; Rich and Venkatasubramanian, 1987;
Venkatasubramanian and Rich, 1988)

• Semantic network models such as ontologies used in materials
discovery and design, domain-specific compilers, etc. Banares-
Alcantara et al. (1985a,b, 1987, 1988), Rich and Venkatasub-
ramanian (1987), Venkatasubramanian and Rich (1988), Aldea
et al. (2003), Venkatasubramanian et al. (2006), Marquardt et al.
(2010), Hailemariam and Venkatasubramanian (2010a,b)

• Object-oriented models such as agent-based models used in sim-
ulating the behavior and decision-making choices of indepen-
dent, interacting, entities endowed with complex attributes and
decision-making powers (Katare and Venkatasubramanian, 2001;
Julka et al., 2002)

All these have far-reaching consequences as we begin to develop
more comprehensive hybrid-AI systems such as the following in the
near future:
 i
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• Combining first-principles with data-driven processing (Sundara
et al., 2001; Viswanathan et al., 2002; Ghosh et al., 2003; Chakrabo
et al., 2020, 2021)

• Causal models-based explanatory systems (Vaidhyanathan and
Venkatasubramanian, 1995; Rich and Venkatasubramanian, 1987;
Venkatasubramanian and Rich, 1988; Rich and Venkatasubrama-
nian, 1989; Vedam and Venkatasubramanian, 1999; Zhao et al.,
2005a,b)

• Domain-specific knowledge engines (Venkatasubramanian et al.,
2006; Caruthers et al., 2003; Katare et al., 2004; Hsu et al., 2008;
Suresh et al., 2010a,b)

Thus, we do not view AI methods as simply useful tools to extract
patterns from large amounts of data, even though that benefit is very
much there, but as a new knowledge modeling paradigm, the next
atural evolutionary stage in the long history of developing formal
ethods: first applied math (i.e., differential and algebraic equations),

hen operations research (i.e., math programming) and now artificial
intelligence. Conceptually, applied math models numerical relation-
ships between variables and parameters, mathematical programming
models relationships between constraints, and AI models relationships
between symbolic variables and symbolic structures. In the early years,
logic was considered the discipline best suited to provide the formal
oundations of AI, but recent developments suggest that probability,
tatistics, and network science are perhaps better suited. The truth
ight lie in some combination of both, depending on the application.
ith generative AI poised to make a great impact in chemical engi-

eering (Decardi-Nelson et al., 2024), increasing the accessibility of
LLMs, application-specific training datasets, and the inclusion of expert
domain knowledge into the model development pipeline, this is an
exciting time for research in this field.

4. Applications

The science and engineering community has a myriad of possibili-
ties to take advantage of this new and rapidly advancing technology.
n this section, we discuss a few specific examples. It is not meant to

be exhaustive, as the field is evolving rapidly, but is only suggestive of
the new and exciting possibilities.

4.1. Finetuning of LLMs

The choice of LLMs for users is growing rapidly. Oftentimes, it is
preferable to adapt an existing pre-trained LLM to a specific task. This
fine-tuning of LLMs has become exceedingly popular (and beneficial) in
recent years. This fine-tuning is, in essence, transfer learning for LLMs.
There are numerous benefits in fine-tuning LLMs: first, one can tailor
the output of a general LLM to a specific domain of application; second,
it reduces the computational load of training a much larger model with
several billion parameters; third, it can reduce the number of trainable
parameters for downstream tasks (Hu et al., 2021).

LLMs have been shown to be capable of learning through successive
prompts, and thus can learn in context (Wei et al., 2023) . Fine-
tuning is a more permanent exercise in contrast to in-context learning.
Here, instead of tuning the trained parameters of the model, one
meticulously crafts the inputs/prompts (prompt engineering) provided
to the model. The objective is to guide the output to better harmonize
with the desired outcome. As more efforts are being made towards
ustomized language models, an increasing variety of prompts can be
rovided to LLMs. These include prompts based on style of the inputs
uch as instruction (e.g., do this action), completion (e.g., complete the
issing link), factual (e.g., provide references for this statement) etc. These
rovide background information to the LLM about the expectation of
he response. Another variety of prompts that can be provided include
eywords, semantic triples, knowledge graphs, relational databases,
mong others. These show significant promise for domains where there
s ample structured and specialized information. The LLMs used in
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such domains can leverage this data in conjunction with its inherent
natural language capabilities to provide outputs which are relevant and
circumvent conventional problems of LLMs such as hallucinations and
unavailability of real-time knowledge.

Building on the concept of in-context learning is the idea of indexing.
This adds an information retrieval functionality to LLMs for extracting
data from textual sources. There are numerous benefits accrued from
in-context learning, such as increased accuracy resulting in reduced
hallucinations and semantic accuracy. The central theme of indexing
LLMs is to use the model as a reasoning engine. Depending on the
application domain, appropriate knowledge bases can be created, and
semantic searches can be made on the same. This approach of combin-
ing a search engine with the natural language reasoning capabilities of
an LLM was popularized by Lewis et al. (2020) as retrieval-augmented
eneration (RAG). A major benefit of such an approach is the ability to

update the knowledge base with new information. In rapidly evolving
fields such as drug discovery, biotechnology, and renewable energy, to
name a few, it is vital that their databases be updated in real-time.

4.2. Explanation generation

A major challenge for the sciences and engineering remains the
explainability of mathematical models. The types of models obtained
after thorough analyses are wide-ranging – from white-box models
(derived from first principles) to black-box models (e.g., neural net-
works), and gray-box models (Von Stosch et al., 2014; Chakraborty
t al., 2022) (which rely on combining the principles of both ends of the

modeling spectrum). Although there are statistical approaches (Ribeiro
et al., 2016; Lundberg and Lee, 2017) that attempt to explain these

odels, often for an end-user, an ideal explanation would be one that is
provided in a natural language fashion. In the domain of model discov-
ery (Wilson and Sahinidis, 2017; Chakraborty et al., 2020; Udrescu and

egmark, 2020; Chakraborty et al., 2021; Jul-Rasmussen et al., 2023,
2024; Chakraborty et al., 2024), it is of prime importance to be able to
xplain the effects of the features, and their corresponding independent

variables on the outputs.
In an attempt to take advantage of the human-like conversational

capabilities of ChatGPT, we apply its prowess to generate meaningful
sentences that give the illusion of understanding in the same way as a
uman expert would, to the task of explaining mathematical equations
nd formulae. This is considerably more challenging than asking Chat-
PT to write prose, or help with explaining a homework problem. This

s because in order to explain the mathematical equation, a relevant
knowledge-base is required for the retrieval of information pertinent
to the query. Further, despite the abundance of training data provided,
ChatGPT does not have information readily available regarding a new
quation or mathematical relation that must be described in a natural
anguage manner — especially one that it has never seen during its
raining process.

Here, we emphasize the need (and success) of providing relevant
context when utilizing such LLMs for generating an explanation in
natural language. Let us consider a relatively simple mathematical
equation that is well known in reaction kinetics, the Arrhenius equa-
tion: 𝑘 = 𝐴𝑒−𝐸𝑎∕𝑅𝑇 , where 𝑘 is the specific reaction rate constant, 𝐸𝑎
is the activation energy, 𝑅 is the universal gas constant, and 𝑇 is the
temperature at which the reaction is occurring. For an expert in the
ield of reaction kinetics, the Arrhenius equation is an empirical relation
enoting a negative-inverse exponential dependence on temperature
long with an inverse-exponential dependence on the activation energy.
urthermore, such an expert can contrast this empirical relationship
ith another equation from the same field of study, e.g., the Eyring–
olanyi equation. Knowledge about the background, derivation, success
nd failure of the equation, details of the variables involved, etc, are
ssential for an explanation provided by a human.

For a capable program (such as ChatGPT) to produce human-like
explanations for mathematical equations and relations, it will require
(but is not limited to) the following:
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1. Information about the variables involved in the equation
2. Background of the equation (e.g., its derivation)
3. Any causal relationship(s) between the dependent and indepen-

dent variables
4. Additional dependencies of the parameters involved (e.g., tem-

perature dependence of the specific rate constant as per the
Arrhenius equation, in a rate law)

These details are typically found in the scientific literature, such
as research articles, specialized textbooks on the subject matter, and
industrial manuals, to name a few. The equation is often surrounded
by additional metadata, such as references to related sources, equation
numbers, derivations, etc. It is thus imperative that when either a
human, or an LLM is asked to provide a human-like explanation for
such an equation, the relevant context is accounted for since it has
pertinent information that can be used effectively for the same.

In conjunction with relevant context, we highlight the importance
f prompt engineering for such an application. Pre-trained LLMs do
ot have all the relevant context for novel equations/mathematical
elations that researchers may discover. Additionally, when a query
s made to an LLM to describe the model, the relevant context must
e provided first. This provides background information, on the basis
f which the LLM can attempt to generate an explanation. One such
xample highlighting the benefit of added context is depicted in Fig. 3.

It should be noted that all existing background information does not
ecessarily need to be provided at the outset. The user may choose to

provide information in varying degrees of complexity, either following
some existing guidelines provided in relevant textual source(s), or
hrough the human expertise regarding the subject matter.

4.3. LLMs in chemistry

The application of LLMs is not restricted to text-related tasks. In the
chemical and biological sciences, many text-based representations exist
that can be used to convert a conventional scientific problem into one
that can be parsed in a textual format. The most popular choices are
the Simplified Molecular Input Line Entry System (SMILES) (Weininger,
1988; Weininger et al., 1989) to represent chemical structures, and
ASTA (Lipman and Pearson, 1985; Pearson and Lipman, 1988) com-

monly used in bioinformatics. LLMs, with their textual reasoning capa-
bilities, can be taken advantage of for such tasks. Guo et al. (2023) used
a variety of GPT models for eight chemistry tasks. These include for-

ard reaction and retrosynthetic prediction, among others, which have
een predicted using domain-specific ML approaches. The results show
ts ability to perform well on text-related explanation tasks such as
olecular captioning and text-based molecular design. Unsurprisingly,

he results are not much better than the current state-of-the-art non-
LM approaches for the same tasks. This can be linked to an inherent
ack of knowledge in the chemistry domain that would be essential –
ay, for a human expert – given the same tasks.

Consequently, an effort was made to enhance the capabilities of
LLMs for chemistry-related tasks, titled ChemCrow (Bran et al., 2023),
y integrating helper ‘‘tools’’ that work with the existing natural lan-

guage reasoning capabilities and enable a wider range of actions. These
include, but are not limited to, a web search tool, a literature search
tool, a Python coding tool, a molecule manipulation tool (which can
lter SMILES, and the corresponding molecules for subsequent tasks),

etc. These improvements substantially improve the performance of the
LLM and can be used to systematically obtain more relevant results
for chemistry-related queries. Furthermore, this can allow the LLM
to provide a reason for its steps taken towards obtaining the results,
which can greatly benefit a human expert and can provide an additional
avenue to explore. Although ChemCrow can have numerous advantages
or the scientific community, it is necessary to have safety measures
n place to reduce the risk of misuse of the same. Consequently, such

tools were added to the framework. Further, for the safety of the user,
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Fig. 3. An example of how background context helps guide ChatGPT towards a better explanation of a simple equation from the domain of chemical reaction engineering. The
additional context provided, is shown in the red colored box. This exemplifies the use of prompt engineering, which enables a more sensible output from LLMs, especially for
more focused question-and-answering tasks such as the one highlighted here.
Fig. 4. The output from SUSIE (Mann et al., 2023b), for an abstract in pharmaceutical sciences, discussing galunisertib (Herbertz et al., 2015).
the data is queried from the PubChem database and are provided in a
simple manner to the user.

Similarly, graph neural nets that have traditionally been unable
to use textual information and lack sufficient training data can be
used in conjunction with language models for reaction prediction, as
demonstrated by ReLM (Shi et al., 2023). Here, reaction prediction
is performed using a pre-trained language model and graph neural
networks. Alternate approaches include using the capabilities of natural
language in the design of organic structures, as was demonstrated by
Ito et al. (2024). Here, GPT-4(Achiam et al., 2023) was used as a natural
language medium to obtain additional insights in an iterative manner.

4.4. LLMs in biology, pharmaceuticals, and drug discovery

Large language models have also become useful in the pharmaceuti-
cal domain. A recent example of this is the extraction of semantic triples
8 
performed on pharmaceutical documents by Schema-based Unsuper-
vised Semantic Information Extraction (SUSIE) (Mann et al., 2023b).
Such a tool can accelerate drug discovery by searching for keywords
and phrases through a corpus of documents in a fraction of the time
that it would take a human expert. This system relied on fine-tuning
a pre-trained domain-specific language model (BioBERT (Lee et al.,
2020)), on data from its intended application domain, followed by
information extraction. Such a tool can drastically reduce the time
taken by a human to undertake repetitive and tedious manual tasks,
to mere seconds. A sample output from SUSIE based on an abstract of
a journal article in the pharmaceutical sciences domain is depicted in
Fig. 4. When this output – which is obtained after careful inclusion of
domain-knowledge expertise into the data-driven pipeline – is provided
to an LLM (here, ChatGPT), it is capable of rendering an accurate
natural language summary of the text. The same is shown in Fig. 5.
Relying on prompt engineering and data augmentation from updated
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Fig. 5. The output from ChatGPT for a summarization task when provided with a
knowledge graph generated by SUSIE (Mann et al., 2023b), for an abstract in pharma-
ceutical sciences, discussing galunisertib (Herbertz et al., 2015). The summarization of
complex scientific text has become simpler, and more accurate by virtue of semantic
triples extracted.

sources, these extracted and domain-aware knowledge graphs serve
as guardrails for the LLMs and guide the model to yield sensible
outputs (Taskiran et al., 2024b,a; Kadiresan et al., 2024).

Other applications in this domain include ChatPathway (Li et al.,
2023), which highlights the successful merging of domain knowledge
in biology with the power of LLMs to predict biochemical reactions and
their pathways. With the rapid increase in the number of applications of
LLMs in the scientific and engineering domains, there has been a rise in
scientific LLMs such as PubMedBERT (Gu et al., 2021), MolGPT (Bagal
et al., 2021), SciBERT (Beltagy et al., 2019) – to name a few. For a more
in-depth review of scientific LLMs, the reader is advised to refer to this
comprehensive article by Zhang et al. (2024) discussing the same in
great detail.

5. Next steps: From LLMs to LKMs

With the advent of the LLMs, Pandora’s box has been opened,
revealing many exciting possibilities and serious concerns. As Venkata-
subramanian argues (Venkatasubramanian, 2024), ultra-large language
models, such as GPT-3.5 and beyond, are not mere autocomplete
engines or stochastic parrots. They have new emergent capabilities that
require creating a new conceptual framework similar to the transition
from Newtonian to statistical mechanics. However, despite their im-
pressive capabilities in specific applications, current LLMs have limited
success in highly scientific and engineering applications. This is mainly
due to the lack of in-depth domain knowledge based on first principles.
Current LLMs, in general, appear to be a mile wide in their scope but
only a foot deep in fundamental principles.

This limitation of purely data science models is due to their lack
of ‘‘understanding’’ of the underlying knowledge. For example, a self-
driving car can navigate impressively through traffic, but does it
‘‘know’’ and ‘‘understand’’ the concepts of mass, momentum, acceler-
ation, force, and Newton’s laws as we do? It does not. Its behavior
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is similar to that of a cheetah chasing an antelope in the wild. Both
animals show great mastery of the dynamics of the chase, but do they
‘‘understand’’ these concepts? At best, current AI systems have perhaps
achieved animal-like mastery of their tasks but have not gained a
deeper ‘‘understanding’’ as many humans do. This is a serious problem.

What we need are domain-specific LLMs that are perhaps a foot
wide but a mile deep in domain knowledge. For example, a custom
LLM in pharmaceutical engineering might not compose poems like
Shakespeare, but it will not hallucinate on pharmaceutical chemistry.
We need many such custom LLMs in different application domains that
can communicate with one another.

This raises the importance of building first-principles knowledge
in LLMs. For four decades, the first author has argued (Rich and
Venkatasubramanian, 1987, 1989) about the importance of such hybrid
AI models, combining mechanistic understanding based on the under-
lying physics, chemistry, and/or biology of our systems and processes
with data-driven techniques. Our domain, in fact, most science and
engineering, is governed by such fundamental principles. In this regard,
it is different from areas such as game playing and computer vision,
where there are no such conservation laws or constitutive equations to
exploit. So, it makes sense in those domains to be primarily data-driven.
But our applications are quite different.

A related point is that many chemical engineering applications are
not ‘‘big data’’. We certainly have access to more data now than we did,
say, a decade ago. But unlike vision or game-playing, we do not gen-
erate terabytes of data easily, except perhaps in computer simulations.
So, purely data-driven techniques mimicked from such domains are not
appropriate and might not work. On the other hand, our first-principles
knowledge can be leveraged and exploited to reduce the need for large
amounts of data. Thus, the construction of hybrid domain-specific LLMs
is more appropriate for many chemical engineering applications.

We classify AI opportunities and challenges into four categories
(Venkatasubramanian, 2019a; AIChE, 2019) – ‘‘easy’’, ‘‘hard’’,
‘‘harder’’, and ‘‘hardest’’, problems. The relatively ‘‘easy’’ ones are those
where plenty of data is available, and many standard machine learning
software could be used to extract useful patterns from such data. These
are not particularly difficult problems, as these were demonstrated even
in the 1990s. On the other hand, ‘‘hard’’ problems require the construc-
tion of hybrid AI models and the generation of mechanism-based causal
explanations. Although work in the 1990s, again, showed (Psichogios
and Ungar, 1992) how these could be done, we are still quite a ways
from developing such models systematically, reliably, and easily for
large-scale and diverse applications. We think this might take another
five years or so.

The third category, the ‘‘harder’’ problems, is those in which
one would have to build domain-specific ontologies, compilers, lan-
guages, etc., such as those reported for catalyst design (Caruthers
et al., 2003; Katare et al., 2004) and pharmaceutical manufacturing
(Venkatasubramanian et al., 2006; Hailemariam and Venkatasubrama-
nian, 2010a,b). Custom domain-specific LLMs fall into this category
(Mann et al., 2023b). This would require much more work than
simply applying standard techniques and software in machine learn-
ing. They need careful integration of symbolic domain knowledge
with data-driven methods. In fact, even generic LLMs such as Chat-
GPT have realized the importance of human experts and are already
doing this under the guise of reinforcement learning with human
feedback (RLHF). Another example of this realization is the devel-
opment of AlphaGeometry, which proves mathematical theorems at
the Olympiad level (Trinh et al., 2024). As a neuro-symbolic system,
it uses a language model in conjunction with a symbolic deduction
engine. In another recent example, researchers at Apple (Mirzadeh
et al., 2024) observe the illusory and brittle nature of reasoning
in LLMs. The domain-specific LLMs that we envision would require
much more human expert guidance in the form of ontologies and
heuristics, reflecting some of the techniques used in the expert systems
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era (Venkatasubramanian, 2019b). Automation tools will certainly
ome along to make building such ontologies somewhat easier.

There are encouraging results on this front in recent work (Roose,
2024-05-21). With the use of dictionary learning, researchers at An-
thropic AI were able to investigate the underlying features (Templeton
t al., 2024) of their LLM named Claude Sonnet (Roose, 2023-02-16).

This is certainly a step in the right direction, as it enables researchers
o better understand the shortcomings of these complex (to date, un-
nterpretable) models and aids in the future development of more
xplainable LLMs. Additional efforts at the frontiers of LLM research
re geared towards developing small language models (SLMs), which
re a fraction of the size of LLMs, are trained on higher quality data,
nd require significantly lower training computations than LLMs. One
uch example is that of Microsoft’s Phi-1 SLM (Gunasekar et al., 2023),

which was trained on a textbook-quality dataset with a size of 7
illion tokens. Building on the success of the earlier model, Microsoft

launched the Phi-3-mini SLM (Abdin et al., 2024). These compact yet
ffective language models are more optimized versions of their larger
redecessors.

Along these lines, an exciting, while nascent, avenue to explore is
the inclusion of knowledge graphs (KGs) in an LLM framework. This
enables one to circumvent the problems of hallucinations in LLMs (Ji
et al., 2023), and augment domain-specific knowledge to LLMs, result-
ing in a system that does not merely recall (occasionally, incorrect)
factual information from its training data (Petroni et al., 2019). Due
o the inherent lack of interpretability of an LLM, which functions
s a black-box model due to its reasoning aided by a probability
odel (Zhang et al., 2022), it is necessary to incorporate structured

nowledge into the same, targeted for a specific domain. For a more
omprehensive treatment of the use of structured knowledge represen-
ation in KGs and enhanced inference and interpretability for LLMs, the
eader is advised to refer to the review article by Pan et al. (2023).

We call these hybrid AI systems Large Knowledge Models (LKMs)
because they will not be limited to NLP-based techniques or NLP-like
applications only. We estimate that such systems might take about
5–10 years to emerge as routine implementations.

Finally, the ‘‘hardest’’ challenge is, as Venkatasubramanian de-
scribes (Venkatasubramanian, 2024) in detail, in developing a
‘Thermodynamics’’-like theory of the LLMs. In our opinion, the most
nteresting and intellectually challenging problems lie in the ‘‘hard’’,
‘harder’’, and ‘‘hardest’’ categories. We think these are the areas where
the PSE research community should focus now.

In conclusion, generative AI has opened up unimagined possibilities
in all aspects of human endeavor. It is poised to have a great impact on
process systems engineering. However, to harness its potential safely
and effectively, we need to go beyond large language models (LLMs)
to large knowledge models (LKMs), which incorporate fundamental
knowledge and human expertise deeply and effectively.

CRediT authorship contribution statement

Venkat Venkatasubramanian: Writing – review & editing, Writ-
ing – original draft, Visualization, Validation, Supervision, Resources,
roject administration, Methodology, Investigation, Funding acquisi-
ion, Formal analysis, Conceptualization. Arijit Chakraborty: Writing
 review & editing, Writing – original draft.

Declaration of competing interest

We, the authors, declare that there is no conflict of interest with this
ubmission.
10 
Acknowledgments

This paper is based on the plenary lecture delivered by the first
author at the European Symposium of Computer-Aided Process Engi-
neering (ESCAPE 33) in Athens, Greece, in June 2023. VV is grateful
for the kind invitation and for the warm hospitality of Professor Antonis
Kokossis and his colleagues at the conference. This work is supported
in part by the NSF EFRI-DCheM, USA 2132142 grant and funding from
the Center for the Management of Systemic Risk (CMSR) at Columbia
University, USA.

Data availability

No data was used for the research described in the article.

References

Abdin, M., Jacobs, S.A., Awan, A.A., Aneja, J., Awadallah, A., Awadalla, H., Bach, N.,
Bahree, A., Bakhtiari, A., Behl, H., et al., 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv preprint arXiv:2404.14219.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida, D.,
Altenschmidt, J., Altman, S., Anadkat, S., et al., 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Acrivos, A., Amundson, N.R., 1955. Applications of matrix mathematics to chemical
engineering problems. Ind. Eng. Chem. 47 (8), 1533–1541.

A.I., S., 2023. Stability AI launches the first of its stablelm suite of language models.
AIChE, 2019. Venkat venkatasubramanian on artificial intelligence in chemical

engineering.
AI@Meta, 2024. Llama 3 model card.
Aldea, A., Bañares-Alcántara, R., Bocio, J., Gramajo, J., Isern, D., Kokossis, A.C.,

Jiménez, L., Moreno, A., Riaño, D., 2003. An ontology-based knowledge
management platform. In: IIWeb. pp. 177–182.

Anderson, P.W., 1972. More is different. Science 177 (4047), 393–396.
Bagal, V., Aggarwal, R., Vinod, P., Priyakumar, U.D., 2021. MolGPT: molecular

generation using a transformer-decoder model. J. Chem. Inf. Model. 62 (9),
2064–2076.

Banares-Alcantara, R., Ko, E., Westerberg, A., Rychener, M., 1988. DECADE—a hybrid
expert system for catalyst selection—II. Final architecture and results. Comput.
Chem. Eng. 12 (9–10), 923–938.

Banares-Alcantara, R., Sriram, D., Venkatasubramanian, V., Westerberg, A., Rych-
ener, M., 1985a. Knowledge-based expert systems for CAD. Chem. Eng. Prog. 81
(9), 25–30.

Banares-Alcantara, R., Westerberg, A., Ko, E., Rychener, M., 1987. Decade—A hybrid
expert system for catalyst selection—I. Expert system consideration. Comput. Chem.
Eng. 11 (3), 265–277.

Banares-Alcantara, R., Westerberg, A.W., Rychener, M.D., 1985b. Development of
an expert system for physical property predictions. Comput. Chem. Eng. 9 (2),
127–142.

Beltagy, I., Lo, K., Cohan, A., 2019. SciBERT: A pretrained language model for scientific
text. arXiv preprint arXiv:1903.10676.

Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S., 2021. On the dangers of
stochastic parrots: Can language models be too big? In: Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency. pp. 610–623.

Biderman, S., Schoelkopf, H., Anthony, Q.G., Bradley, H., O’Brien, K., Hallahan, E.,
Khan, M.A., Purohit, S., Prashanth, U.S., Raff, E., et al., 2023. Pythia: A suite
for analyzing large language models across training and scaling. In: International
Conference on Machine Learning. PMLR, pp. 2397–2430.

Bran, A.M., Cox, S., White, A.D., Schwaller, P., 2023. ChemCrow: Augmenting
large-language models with chemistry tools. arXiv preprint arXiv:2304.05376.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., et al., 2020. Language models are few-shot
learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901.

Caruthers, J., Lauterbach, J.A., Thomson, K., Venkatasubramanian, V., Snively, C.,
Bhan, A., Katare, S., Oskarsdottir, G., 2003. Catalyst design: knowledge extraction
from high-throughput experimentation. J. Catalysis 216 (1–2), 98–109.

Chakraborty, A., Gandhi, A., Hasan, M.F., Venkatasubramanian, V., 2024. Discovering
zeolite adsorption isotherms: a hybrid AI modeling approach. In: Computer Aided
Chemical Engineering. vol. 53, Elsevier, pp. 511–516.

Chakraborty, A., Serneels, S., Claussen, H., Venkatasubramanian, V., 2022. Hybrid
AI models in chemical engineering–A purpose-driven perspective. Comput. Aided
Chem. Eng. 51, 1507–1512.

Chakraborty, A., Sivaram, A., Samavedham, L., Venkatasubramanian, V., 2020. Mech-
anism discovery and model identification using genetic feature extraction and
statistical testing. Comput. Chem. Eng. 140, 106900.

http://arxiv.org/abs/2404.14219
http://arxiv.org/abs/2303.08774
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb3
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb3
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb3
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb4
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb5
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb5
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb5
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb6
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb7
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb7
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb7
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb7
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb7
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb8
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb9
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb9
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb9
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb9
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb9
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb10
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb10
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb10
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb10
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb10
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb11
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb11
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb11
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb11
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb11
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb12
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb12
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb12
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb12
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb12
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb13
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb13
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb13
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb13
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb13
http://arxiv.org/abs/1903.10676
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb15
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb15
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb15
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb15
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb15
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb16
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb16
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb16
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb16
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb16
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb16
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb16
http://arxiv.org/abs/2304.05376
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb18
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb18
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb18
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb18
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb18
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb19
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb19
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb19
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb19
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb19
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb20
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb20
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb20
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb20
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb20
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb21
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb21
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb21
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb21
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb21
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb22
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb22
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb22
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb22
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb22


V. Venkatasubramanian and A. Chakraborty Computers and Chemical Engineering 192 (2025) 108895 
Chakraborty, A., Sivaram, A., Venkatasubramanian, V., 2021. AI-DARWIN: A first
principles-based model discovery engine using machine learning. Comput. Chem.
Eng. 154, 107470.

Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S.,
Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P., 2023. Vicuna: An open-source
chatbot impressing GPT-4 with 90%* ChatGPT quality.

Christiano, P.F., Leike, J., Brown, T., Martic, M., Legg, S., Amodei, D., 2017. Deep
reinforcement learning from human preferences. Adv. Neural Inf. Process. Syst. 30.

Colby, K.M., 1974. Ten criticisms of parry. ACM SIGART Bull. (48), 5–9.
Colby, K.M., Weber, S., Hilf, F.D., 1971. Artificial paranoia. Art. Intell. 2 (1), 1–25.
Conover, M., Hayes, M., Mathur, A., Xie, J., Wan, J., Shah, S., Ghodsi, A., Wendell, P.,

Zaharia, M., Xin, R., 2023. Free dolly: Introducing the world’s first truly open
instruction-tuned LLM.

Daoutidis, P., Zhang, Q., 2022. From Amundson, Aris, and Sargent to the future of
process systems engineering. Chem. Eng. Res. Des. 188, 704–713.

Decardi-Nelson, B., Alshehri, A.S., Ajagekar, A., You, F., 2024. Generative AI and
process systems engineering: The next frontier. arXiv preprint arXiv:2402.10977.

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.
04805.

Erman, L.D., Hayes-Roth, F., Lesser, V.R., Reddy, D.R., 1980. The Hearsay-II speech-
understanding system: Integrating knowledge to resolve uncertainty. ACM Comput.
Surv. 12 (2), 213–253.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H.,
Thite, A., Nabeshima, N., Presser, S., Leahy, C., 2020. The pile: An 800 GB dataset
of diverse text for language modeling. arXiv preprint arXiv:2101.00027.

Gers, F.A., Schmidhuber, E., 2001. LSTM recurrent networks learn simple context-free
and context-sensitive languages. IEEE Trans. Neural Netw.s 12 (6), 1333–1340.

Ghosh, P., Katare, S., Patkar, P., Caruthers, J.M., Venkatasubramanian, V., Walker, K.A.,
2003. Sulfur vulcanization of natural rubber for benzothiazole accelerated formula-
tions: from reaction mechanisms to a rational kinetic model. Rubber Chem. Technol.
76 (3), 592–693.

Grynbaum, M.M., Mac, R., 2023-12-27. The times sues openai and microsoft over A.I.
Use of copyrighted work. N.Y. Times.

Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu, X., Naumann, T., Gao, J.,
Poon, H., 2021. Domain-specific language model pretraining for biomedical natural
language processing. ACM Trans. Comput. Healthc. (HEALTH) 3 (1), 1–23.

Gunasekar, S., Zhang, Y., Aneja, J., Cesar, C., Mendes, T., Giorno, A.D., Gopi, S.,
Javaheripi, M., Kauffmann, P., de Rosa, G., Saarikivi, O., Salim, A., Shah, S.,
Singh Behl, H., Wang, X., Bubeck, S., Eldan, R., Kalai, A.T., Lee, Y.T., Li, Y., 2023.
Textbooks are all you need.

Guo, T., Guo, K., Liang, Z., Guo, Z., Chawla, N.V., Wiest, O., Zhang, X., et al., 2023.
What indeed can GPT models do in chemistry? A comprehensive benchmark on
eight tasks. arXiv preprint arXiv:2305.18365.

Hailemariam, L., Venkatasubramanian, V., 2010a. Purdue ontology for pharmaceutical
engineering: part I. Conceptual framework. J. Pharm. Innov. 5, 88–99.

Hailemariam, L., Venkatasubramanian, V., 2010b. Purdue ontology for pharmaceutical
engineering: Part II. Applications. J. Pharm. Innov. 5, 139–146.

Herbertz, S., Sawyer, J.S., Stauber, A.J., Gueorguieva, I., Driscoll, K.E., Estrem, S.T.,
Cleverly, A.L., Desaiah, D., Guba, S.C., Benhadji, K.A., et al., 2015. Clinical
development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor
of transforming growth factor-beta signaling pathway. Drug Design, Development
and Therapy 4479–4499.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8),
1735–1780.

Hsu, S.-H., Krishnamurthy, B., Rao, P., Zhao, C., Jagannathan, S., Venkatasubrama-
nian, V., 2008. A domain-specific compiler theory based framework for automated
reaction network generation. Comput. Chem. Eng. 32 (10), 2455–2470.

Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.,
2021. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:
2106.09685.

Iri, M., Aoki, K., O’Shima, E., Matsuyama, H., 1979. An algorithm for diagnosis of
system failures in the chemical process. Comput. Chem. Eng. 3 (1–4), 489–493.

Ito, S., Muraoka, K., Nakayama, A., 2024. De novo design of organic structure-directing
agents for zeolites using a general-purpose large language model. ChemRxiv.

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y.J., Madotto, A.,
Fung, P., 2023. Survey of hallucination in natural language generation. ACM
Comput. Surv. 55 (12), 1–38.

Johnsson, C., Årzén, K.-E., 1998. Grafchart and its relations to grafcet and Petri nets.
IFAC Proc. Vol. 31 (15), 95–100.

Jul-Rasmussen, P., Chakraborty, A., Venkatasubramanian, V., Liang, X., Huusom, J.K.,
2023. Identifying first-principles models for bubble column aeration using ma-
chine learning. In: Computer Aided Chemical Engineering. vol. 52, Elsevier, pp.
1089–1094.

Jul-Rasmussen, P., Chakraborty, A., Venkatasubramanian, V., Liang, X., Huusom, J.K.,
2024. Hybrid AI modeling techniques for pilot scale bubble column aeration: A
comparative study. Comput. Chem. Eng. 108655.

Julka, N., Srinivasan, R., Karimi, I., 2002. Agent-based supply chain management—1:
framework. Comput. Chem. Eng. 26 (12), 1755–1769.
11 
Kadiresan, A., Taskiran, N.P., Chakraborty, A., Mann, V., Venkatasubramanian, V.,
2024. Contrastive learning to improve pharmaceutical knowledge graph quality
in machine learning. In: 2024 AIChE Annual Meeting. AIChE.

Katare, S., Caruthers, J.M., Delgass, W.N., Venkatasubramanian, V., 2004. An intelligent
system for reaction kinetic modeling and catalyst design. Ind. Eng. Chem. Res. 43
(14), 3484–3512.

Katare, S., Venkatasubramanian, V., 2001. An agent-based learning framework for
modeling microbial growth. Eng. Appl. Artif. Intell. 14 (6), 715–726.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., Kang, J., 2020. BioBERT: a
pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics 36 (4), 1234–1240.

Lenat, D.B., 1988. The case for inelegance. In: Proceedings of the International
Workshop on Artificial Intelligence for Industrial Applications, Tokyo.

Lenat, D.B., Feigenbaum, E.A., 1991. On the thresholds of knowledge. Artificial
Intelligence 47 (1), 185–250.

Lenat, D., Marcus, G., 2023. Getting from generative ai to trustworthy ai: What llms
might learn from cyc. arXiv preprint arXiv:2308.04445.

Lenat, D.B., Prakash, M., Shepherd, M., 1985. CYC: Using common sense knowledge to
overcome brittleness and knowledge acquisition bottlenecks. AI Mag. 6 (4), 65.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H.,
Lewis, M., Yih, W.-t., Rocktäschel, T., et al., 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Adv. Neural Inf. Process. Syst. 33, 9459–9474.

Li, Y., Xu, H., Zhao, H., Guo, H., Liu, S., 2023. Chatpathway: Conversational large
language models for biology pathway detection. In: NeurIPS 2023 AI for Science
Workshop.

Lipman, D.J., Pearson, W.R., 1985. Rapid and sensitive protein similarity searches.
Science 227 (4693), 1435–1441.

Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions.
Adv. Neural Inf. Process. Syst. 30.

Mann, V., Brito, K., Gani, R., Venkatasubramanian, V., 2022. Hybrid, interpretable
machine learning for thermodynamic property estimation using grammar2vec for
molecular representation. Fluid Phase Equilib. 561, 113531.

Mann, V., Gani, R., Venkatasubramanian, V., 2023a. Group contribution-based property
modeling for chemical product design: A perspective in the AI era. Fluid Phase
Equilib. 568, 113734.

Mann, V., Sales-Cruz, M., Gani, R., Venkatasubramanian, V., 2024. eSFILES: Intelligent
process flowsheet synthesis using process knowledge, symbolic AI, and machine
learning. Comput. Chem. Eng. 181, 108505.

Mann, V., Venkatasubramanian, V., 2021. Predicting chemical reaction outcomes: A
grammar ontology-based transformer framework. AIChE J. 67 (3), e17190.

Mann, V., Viswanath, S., Vaidyaraman, S., Balakrishnan, J., Venkatasubramanian, V.,
2023b. SUSIE: Pharmaceutical CMC ontology-based information extraction for drug
development using machine learning. Comput. Chem. Eng. 179, 108446.

Marcus, M., Santorini, B., Marcinkiewicz, M.A., 1993. Building a large annotated corpus
of English: The Penn Treebank. Comput. Linguist. 19 (2), 313–330.

Marquardt, W., Morbach, J., Wiesner, A., Yang, A., CAPE, O., 2010. A Re-Usable
Ontology for Chemical Process Engineering. Springer.

Maurya, M.R., Rengaswamy, R., Venkatasubramanian, V., 2003. A systematic frame-
work for the development and analysis of signed digraphs for chemical processes.
1. Algorithms and analysis. Ind. Eng. Chem. Res. 42 (20), 4789–4810.

Mirzadeh, I., Alizadeh, K., Shahrokhi, H., Tuzel, O., Bengio, S., Farajtabar, M., 2024.
GSM-symbolic: Understanding the limitations of mathematical reasoning in large
language models. arXiv preprint arXiv:2410.05229.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C.,
Agarwal, S., Slama, K., Ray, A., et al., 2022. Training language models to follow
instructions with human feedback. Adv. Neural Inf. Process. Syst. 35, 27730–27744.

Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., Wu, X., 2023. Unifying large language
models and knowledge graphs: A roadmap. arXiv preprint arXiv:2306.08302.

Pearson, W.R., Lipman, D.J., 1988. Improved tools for biological sequence comparison.
Proc. Natl. Acad. Sci. 85 (8), 2444–2448.

Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A.H., Riedel, S.,
2019. Language models as knowledge bases? arXiv preprint arXiv:1909.01066.

Psichogios, D.C., Ungar, L.H., 1992. A hybrid neural network-first principles approach
to process modeling. AIChE J. 38 (10), 1499–1511.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al., 2018. Improving
language understanding by generative pre-training.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al., 2019. Language
models are unsupervised multitask learners. OpenAI Blog 1 (8), 9.

Ramkrishna, D., 2013. The Neal Amundson era. Rapid evolution of chemical
engineering science. AIChE J. 59 (9), 3147–3157.

Ramkrishna, D., Amundson, N.R., 2004. Mathematics in chemical engineering: A 50
year introspection. AIChE J. 50 (1), 7–23.

Ribeiro, M.T., Singh, S., Guestrin, C., 2016. " why should i trust you?" explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 1135–1144.

Rich, E., 1985. Artificial intelligence and the humanities. Comput. Humanit. 19 (2),
117–122.

Rich, S.H., Venkatasubramanian, V., 1987. Model-based reasoning in diagnostic expert
systems for chemical process plants. Comput. Chem. Eng. 11 (2), 111–122.

http://refhub.elsevier.com/S0098-1354(24)00313-2/sb23
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb23
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb23
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb23
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb23
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb24
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb24
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb24
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb24
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb24
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb25
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb25
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb25
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb26
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb27
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb28
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb28
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb28
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb28
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb28
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb29
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb29
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb29
http://arxiv.org/abs/2402.10977
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb32
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb32
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb32
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb32
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb32
http://arxiv.org/abs/2101.00027
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb34
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb34
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb34
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb35
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb35
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb35
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb35
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb35
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb35
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb35
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb36
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb36
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb36
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb37
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb37
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb37
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb37
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb37
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb38
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb38
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb38
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb38
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb38
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb38
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb38
http://arxiv.org/abs/2305.18365
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb40
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb40
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb40
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb41
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb41
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb41
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb42
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb42
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb42
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb42
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb42
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb42
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb42
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb42
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb42
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb43
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb43
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb43
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb44
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb44
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb44
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb44
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb44
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb46
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb46
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb46
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb47
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb47
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb47
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb48
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb48
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb48
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb48
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb48
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb49
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb49
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb49
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb50
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb50
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb50
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb50
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb50
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb50
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb50
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb51
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb51
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb51
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb51
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb51
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb52
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb52
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb52
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb53
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb53
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb53
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb53
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb53
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb54
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb54
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb54
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb54
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb54
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb55
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb55
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb55
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb56
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb56
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb56
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb56
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb56
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb57
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb57
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb57
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb58
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb58
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb58
http://arxiv.org/abs/2308.04445
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb60
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb60
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb60
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb61
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb61
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb61
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb61
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb61
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb62
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb62
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb62
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb62
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb62
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb63
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb63
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb63
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb64
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb64
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb64
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb65
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb65
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb65
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb65
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb65
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb66
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb66
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb66
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb66
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb66
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb67
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb67
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb67
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb67
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb67
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb68
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb68
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb68
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb69
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb69
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb69
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb69
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb69
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb70
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb70
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb70
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb71
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb71
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb71
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb72
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb72
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb72
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb72
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb72
http://arxiv.org/abs/2410.05229
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb74
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb74
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb74
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb74
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb74
http://arxiv.org/abs/2306.08302
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb76
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb76
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb76
http://arxiv.org/abs/1909.01066
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb78
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb78
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb78
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb79
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb79
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb79
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb80
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb80
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb80
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb81
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb81
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb81
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb82
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb82
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb82
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb83
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb83
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb83
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb83
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb83
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb84
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb84
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb84
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb85
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb85
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb85


V. Venkatasubramanian and A. Chakraborty Computers and Chemical Engineering 192 (2025) 108895 
Rich, S.H., Venkatasubramanian, V., 1989. Causality-based failure-driven learning in
diagnostic expert systems. AIChE J. 35 (6), 943–950.

Roose, K., 2023-02-16. A conversation with bing’s chatbot left me deeply unsettled.
N.Y. Times.

Roose, K., 2024-05-21. A.I.’s black boxes just got a little less mysterious. N.Y. Times.
Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by

back-propagating errors. Nature 323 (6088), 533–536.
Russell, S.J., Norvig, P., 2016. Artificial Intelligence: a Modern Approach. Pearson.
Sargent, R., 1967. Integrated design and optimization of processes. Chem. Eng. Prog.

63 (9), 71–+.
Scao, T.L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Castagné, R., Luc-

cioni, A.S., Yvon, F., Gallé, M., et al., 2022. Bloom: A 176b-parameter open-access
multilingual language model. arXiv preprint arXiv:2211.05100.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Shi, Y., Zhang, A., Zhang, E., Liu, Z., Wang, X., 2023. Relm: Leveraging language models
for enhanced chemical reaction prediction. arXiv preprint arXiv:2310.13590.

Stephanopoulos, G., Henning, G., Leone, H., 1990. MODEL. LA. a modeling language
for process engineering—I. The formal framework. Comput. Chem. Eng. 14 (8),
813–846.

Stephanopoulos, G., Johnston, J., Kriticos, T., Lakshmanan, R., Mavrovouniotis, M.,
Siletti, C., 1987. DESIGN-KIT: An object-oriented environment for process
engineering. Comput. Chem. Eng. 11 (6), 655–674.

Sundaram, A., Ghosh, P., Caruthers, J.M., Venkatasubramanian, V., 2001. Design of
fuel additives using neural networks and evolutionary algorithms. AIChE J. 47 (6),
1387–1406.

Suresh, P., Hsu, S.-H., Akkisetty, P., Reklaitis, G.V., Venkatasubramanian, V., 2010a.
OntoMODEL: ontological mathematical modeling knowledge management in phar-
maceutical product development, 1: conceptual framework. Ind. Eng. Chem. Res.
49 (17), 7758–7767.

Suresh, P., Hsu, S.-H., Reklaitis, G.V., Venkatasubramanian, V., 2010b. OntoMODEL:
ontological mathematical modeling knowledge management in pharmaceutical
product development, 2: applications. Ind. Eng. Chem. Res. 49 (17), 7768–7781.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., Liang, P.,
Hashimoto, T.B., 2023. Stanford alpaca: An instruction-following LLaMA model.
https://github.com/tatsu-lab/stanford_alpaca.

Taskiran, N.P., Chakraborty, A., Mann, V., Venkatasubramanian, V., 2024a. Accelerating
drug discovery through the automatic population of a pharmaceutical ontology
using knowledge graphs. In: 2024 AIChE Annual Meeting. AIChE.

Taskiran, N.P., Tsai, C.-E., Chakraborty, A., Mann, V., Venkatasubramanian, V., 2024b.
A knowledge-graph-based pharmaceutical engineering chatbot for drug discovery.
In: 2024 AIChE Annual Meeting. AIChE.

Team, T.M.R., 2024. Introducing DBRX: A new state-of-the-art open LLM.
Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu, J., Soricut, R., Schalkwyk, J.,

Dai, A.M., Hauth, A., et al., 2023. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805.

Templeton, A., Conerly, T., Marcus, J., Lindsey, J., Bricken, T., Chen, B., Pearce, A.,
Citro, C., Ameisen, E., Jones, A., Cunningham, H., Turner, N.L., McDougall, C.,
MacDiarmid, M., Freeman, C.D., Sumers, T.R., Rees, E., Batson, J., Jermyn, A.,
Carter, S., Olah, C., Henighan, T., 2024. Scaling monosemanticity: Extracting
interpretable features from claude 3 sonnet. Transform. Circuits Thread.

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-T.,
Jin, A., Bos, T., Baker, L., Du, Y., et al., 2022. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., et al., 2023a. Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N.,
Batra, S., Bhargava, P., Bhosale, S., et al., 2023b. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288.

Trinh, T.H., Wu, Y., Le, Q.V., He, H., Luong, T., 2024. Solving olympiad geometry
without human demonstrations. Nature 625 (7995), 476–482.

Turing, A.M., 1950. Computing Machinery And Intelligence. Mind LIX (236), 433–460.
Udrescu, S.-M., Tegmark, M., 2020. AI Feynman: A physics-inspired method for

symbolic regression. Sci. Adv. 6 (16), eaay2631.
Ungar, L., Venkatasubramanian, V., 1990. Advance reasoning architectures for expert

systems. The CACHE Corporation, Austin, TX.
12 
Vaidhyanathan, R., Venkatasubramanian, V., 1995. Digraph-based models for
automated HAZOP analysis. Reliab. Eng. Syst. Saf. 50 (1), 33–49.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I., 2017. Attention is all you need. Adv. Neural Inf. Process. Syst. 30.

Vedam, H., Venkatasubramanian, V., 1999. PCA-SDG based process monitoring and
fault diagnosis. Control Eng. Pract. 7 (7), 903–917.

Venkatasubramanian, V., 1989. Knowledge-based Systems in Process Engineering: case
Studies in Heuristic Classification. The CACHE Corporation, Austin, TX.

Venkatasubramanian, V., 2019a. Artificial intelligence in materials science: the good,
the bad, and the ugly. In: 2019 AIChE Annual Meeting. AIChE.

Venkatasubramanian, V., 2019b. The promise of artificial intelligence in chemical
engineering: Is it here, finally? AIChE J. 65 (2), 466–478.

Venkatasubramanian, V., 2024. What’s in an embedding? Would a rose by any
embedding smell as sweet? arXiv.

Venkatasubramanian, V., Mann, V., 2022. Artificial intelligence in reaction prediction
and chemical synthesis. Curr. Opin. Chem. Eng. 36, 100749.

Venkatasubramanian, V., Rich, S., 1988. An object-oriented two-tier architecture for
integrating compiled and deep-level knowledge for process diagnosis. Comput.
Chem. Eng. 12 (9–10), 903–921.

Venkatasubramanian, V., Zhao, C., Joglekar, G., Jain, A., Hailemariam, L., Suresh, P.,
Akkisetty, P., Morris, K., Reklaitis, G.V., 2006. Ontological informatics infrastruc-
ture for pharmaceutical product development and manufacturing. Comput. Chem.
Eng. 30 (10–12), 1482–1496.

Viswanathan, S., Johnsson, C., Srinivasan, R., Venkatasubramanian, V., Ärzen, K.E.,
1998a. Automating operating procedure synthesis for batch processes: Part I.
Knowledge representation and planning framework. Comput. Chem. Eng. 22 (11),
1673–1685.

Viswanathan, S., Johnsson, C., Srinivasan, R., Venkatasubramanian, V., Ärzen, K.E.,
1998b. Automating operating procedure synthesis for batch processes: Part II.
Implementation and application. Comput. Chem. Eng. 22 (11), 1687–1698.

Viswanathan, S., Shah, N., Venkatasubramanian, V., 2002. Hybrid framework for hazard
identification and assessment in batch processes. AIChE J. 48 (8), 1765–1774.

Viterbi, A., 1967. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Trans. Inf. Theory 13 (2), 260–269.

Von Stosch, M., Oliveira, R., Peres, J., de Azevedo, S.F., 2014. Hybrid semi-parametric
modeling in process systems engineering: Past, present and future. Comput. Chem.
Eng. 60, 86–101.

Wei, J., Wei, J., Tay, Y., Tran, D., Webson, A., Lu, Y., Chen, X., Liu, H., Huang, D.,
Zhou, D., et al., 2023. Larger language models do in-context learning differently.
arXiv preprint arXiv:2303.03846.

Weininger, D., 1988. SMILES, a chemical language and information system. 1. Intro-
duction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28 (1),
31–36.

Weininger, D., Weininger, A., Weininger, J.L., 1989. SMILES. 2. Algorithm for
generation of unique SMILES notation. J. Chem. Inf. Comput. Sci. 29 (2), 97–101.

Weizenbaum, J., 1966. ELIZA—a computer program for the study of natural language
communication between man and machine. Commun. ACM 9 (1), 36–45.

Wilson, Z.T., Sahinidis, N.V., 2017. The ALAMO approach to machine learning. Comput.
Chem. Eng. 106, 785–795.

Winograd, T., 1971. Procedures as a representation for data in a computer program
for understanding natural language. Technical Report, Massachusetts Inst of Tech
Cambridge Project Mac.

Zhang, Q., Ding, K., Lyv, T., Wang, X., Yin, Q., Zhang, Y., Yu, J., Wang, Y., Li, X.,
Xiang, Z., et al., 2024. Scientific large language models: A survey on biological &
chemical domains. arXiv preprint arXiv:2401.14656.

Zhang, H., Song, H., Li, S., Zhou, M., Song, D., 2022. A survey of controllable text
generation using transformer-based pre-trained language models. arXiv preprint
arXiv:2201.05337.

Zhao, C., Bhushan, M., Venkatasubramanian, V., 2005a. PHASuite: an automated HA-
ZOP analysis tool for chemical processes: part I: knowledge engineering framework.
Process Saf. Environ. Prot. 83 (6), 509–532.

Zhao, C., Bhushan, M., Venkatasubramanian, V., 2005b. PHASuite: An automated
HAZOP analysis tool for chemical processes: Part II: Implementation and Case
Study. Process Saf. Environ. Prot. 83 (6), 533–548.

http://refhub.elsevier.com/S0098-1354(24)00313-2/sb86
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb86
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb86
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb87
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb87
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb87
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb88
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb89
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb89
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb89
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb90
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb91
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb91
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb91
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2310.13590
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb95
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb95
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb95
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb95
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb95
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb96
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb96
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb96
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb96
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb96
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb97
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb97
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb97
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb97
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb97
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb98
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb98
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb98
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb98
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb98
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb98
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb98
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb99
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb99
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb99
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb99
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb99
https://github.com/tatsu-lab/stanford_alpaca
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb101
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb101
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb101
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb101
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb101
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb102
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb102
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb102
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb102
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb102
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb103
http://arxiv.org/abs/2312.11805
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb105
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb105
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb105
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb105
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb105
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb105
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb105
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb105
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb105
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb109
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb109
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb109
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb110
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb111
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb111
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb111
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb112
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb112
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb112
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb113
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb113
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb113
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb114
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb114
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb114
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb115
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb115
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb115
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb116
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb116
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb116
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb117
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb117
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb117
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb118
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb118
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb118
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb119
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb119
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb119
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb120
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb120
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb120
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb121
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb121
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb121
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb121
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb121
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb122
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb122
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb122
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb122
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb122
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb122
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb122
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb123
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb123
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb123
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb123
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb123
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb123
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb123
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb124
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb124
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb124
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb124
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb124
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb125
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb125
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb125
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb126
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb126
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb126
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb127
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb127
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb127
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb127
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb127
http://arxiv.org/abs/2303.03846
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb129
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb129
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb129
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb129
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb129
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb130
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb130
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb130
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb131
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb131
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb131
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb132
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb132
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb132
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb133
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb133
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb133
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb133
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb133
http://arxiv.org/abs/2401.14656
http://arxiv.org/abs/2201.05337
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb136
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb136
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb136
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb136
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb136
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb137
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb137
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb137
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb137
http://refhub.elsevier.com/S0098-1354(24)00313-2/sb137

	Quo Vadis ChatGPT? From large language models to Large Knowledge Models
	Introduction
	Evolution of Language Models
	Early Years: The Symbolic AI approach – 1950–1990
	The data-driven statistical approach – 1990–2017
	The transformer revolution – 2017-Present
	ChatGPT
	Training Data
	Training Procedure
	Open-source LLMs


	Modeling Knowledge in Chemical Engineering: The Three Paradigms
	Role of Symbolic AI in Knowledge Modeling and Representation

	Applications
	Finetuning of LLMs
	Explanation Generation
	LLMs in Chemistry
	LLMs in biology, pharmaceuticals, and drug discovery

	Next steps: From LLMs to LKMs
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


